ID MODEM	文档版本	密级
IP MODEM 使用说明书	V1. 0. 0	
	产品名称: IP MODEM V4	共 31 页

IP MODEM V4 系列 使用说明书

第一章 产品简介

1.1 产品概述

IP MODEM V4 系列 是一种物联网无线数据终端,利用公用蜂窝网络为用户提供无线长距离数据传输功能。

该产品采用高性能的工业级 32 位通信处理器和工业级无线模块,以嵌入式实时操作系统为软件支撑平台,同时提供 RS232 和 RS485 接口,可直接连接串口设备,实现数据透明传输功能;低功耗设计;提供 3 路 I/O, 2 路 ADC,可实现数字量输入输出、脉冲输出、模拟量输入、脉冲计数等功能。

该产品已广泛应用于物联网产业链中的 M2M 行业,如智能电网、智能交通、智能家居、金融、移动 POS 终端、供应链自动化、工业自动化、智能建筑、消防、公共安全、环境保护、 气象、数字化医疗、遥感勘测、军事、空间探索、农业、林业、水务、煤矿、石化等领域。IP MODEM 典型应用如图 1-1 所示:

图 1-1 IP MODEM 应用拓扑图

工业级应用设计

- ◆ 采用高性能工业级无线模块
- ◆ 采用高性能工业级 32 位通信处理器
- ◆ 低功耗设计,支持多级休眠和唤醒模式,最大限度降低功耗
- ◆ 采用金属外壳,保护等级 IP30,金属外壳和系统安全隔离,适合于工控现场的应用
- ◆ 宽电源输入(DC 5~36V)

稳定可靠

- ◆ WDT 看门狗设计,保证系统稳定
- ◆ 采用完备的防掉线机制,保证数据终端永远在线
- ◆ RS232/RS485 接口内置 15KV ESD 保护
- ◆ SIM/UIM 卡接口内置 15KV ESD 保护
- ◆ 电源接口内置反相保护和过压保护
- ◆ 天线接口防雷保护(可选)

标准易用

- ◆ 采用工业端子接口,特别适合于工业现场应用
- ◆ 提供 1 路标准 RS232 和 1 路标准 RS485 接口,可直接连接串口设备
- ◆ 可定制 TTL 电平串口,可定制 ADC
- ◆ 智能型数据终端,上电即可进入数据传输状态
- ◆ 提供功能强大的中心管理软件,方便设备管理(可选)
- ◆ 使用方便,灵活,多种工作模式选择
- ◆ 方便的系统配置和维护接口
- ◆ 支持串口软件升级和远程维护

功能强大

- ◆ 支持 TCP server 功能,可同时支持 4 个 TCP 连接(可选)
- ◆ 支持双数据中心备份传输及多数据中心同步传输(5个数据中心)
- ◆ 提供 3 路 I/O,可实现 3 路数字量输入输出;可定制 3 路脉冲输出、3 路模拟量输入、3 路脉冲计数功能;2 路模拟量采集(电流采集)
- ◆ 支持多种上下线触发模式,包括短信、电话振铃、串口数据触发上下线模式
- ◆ 支持根据域名和 IP 地址访问中心
- ◆ 内嵌标准的 TCP/IP 协议栈,支持透明数据传输
- ◆ 支持 APN/VPDN

1.3 工作原理框图

IP MODEM 结构框图如图 1-2 所示:

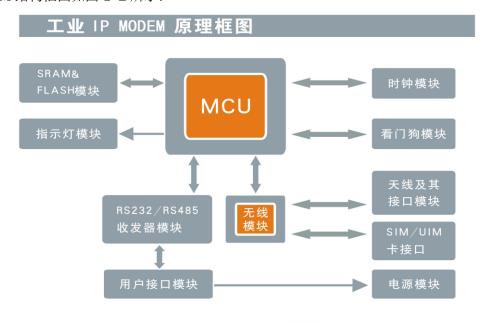


图 1-2 IP MODEM 结构框图

1.4 产品规格

硬件系统

项目	内 容
СРИ	工业级 32 位通信处理器
FLASH	1MB
SRAM	256KB
ADC	12-bit

接口类型

项目 内容 串口 1 个 RS232 和 1 个 RS485 接口, 内置 15KV ESD 保护, 串口参数数据位: 5、6、7、8 位停止位: 1、1.5、2 位校验: 无校验、偶校验、奇校验、SPACE 及 MARK 校验串口速率: 1200~230400bits/s 指示灯 具有电源、通信及在线指示灯天线接口 天线接口 标准 SMA 阴头天线接口, 特性阻抗 50 欧			
数据位: 5、6、7、8 位 停止位: 1、1.5、2 位 校验: 无校验、偶校验、奇校验、SPACE 及 MARK 校验 串口速率: 1200~230400bits/s 指示灯 具有电源、通信及在线指示灯 天线接口 标准 SMA 阴头天线接口,特性阻抗 50 欧			
停止位: 1、1.5、2 位 校验: 无校验、偶校验、奇校验、SPACE 及 MARK 校验 串口速率: 1200~230400bits/s 指示灯 具有电源、通信及在线指示灯 天线接口 标准 SMA 阴头天线接口,特性阻抗 50 欧	ESD		
校验: 无校验、偶校验、奇校验、SPACE 及 MARK 校验 串口速率: 1200~230400bits/s 指示灯 具有电源、通信及在线指示灯 天线接口 标准 SMA 阴头天线接口,特性阻抗 50 欧	ESD		
#口速率: 1200~230400bits/s 指示灯 具有电源、通信及在线指示灯 天线接口 标准 SMA 阴头天线接口,特性阻抗 50 欧	ESD		
指示灯 具有电源、通信及在线指示灯 天线接口 标准 SMA 阴头天线接口,特性阻抗 50 欧	ESD		
天线接口 标准 SMA 阴头天线接口,特性阻抗 50 欧	ESD		
	ESD		
	ESD		
SIM/UIM 卡接口 标准的抽屉式 SIM 卡接口,支持 1.8V/3V SIM/UIM 卡,内置 15KV			
保护			
电源接口 端子接口,内置电源反相保护和过压保护	端子接口,内置电源反相保护和过压保护		
蜂窝天线接口+			
↓ SIM 卡座↓			
も STM N王*			
注: 不同型号配件和接口可能存在差异,具体以实物为准。			

供电

项目	内 容
标准电源	DC 12V/0.5A
供电范围	DC 5~36V

功耗 (因模块而异)

工作状态	功 耗
通信状态	20~80mA@12VDC
待机状态	15~30 mA@12VDC

物理特性

项目	内 容	
外壳	金属外壳,保护等级 IP30。外壳和系统安全隔离,特别适合工控现场 应用	
外形尺寸	91x58.5x22 mm (不包括天线和安装件)	
重量	205g	

其它参数

项目	内 容
工作温度	-35~+75°C (-22~+167°F)
储存温度	-40~+85°C (-40~+185°F)
相对湿度	95%(无凝结)

第二章 安装

2.1 概述

IP MODEM 必须正确安装方可达到设计的功能,通常设备的安装必须在本公司认可合格的工程师指导下进行。

▶ 注意事项:

请不要带电安装 IP MODEM。

2.2 开箱

为了安全运输,IP MODEM 通常需要合理的包装,当您开箱时请保管好包装材料,以便日后需要转运时使用。

IP MODEM 包括下列组成部分:

- ◆ IP MODEM 主机 1 个(根据用户订货情况包装)
- ◆ 保修卡 1 张
- ◆ 车载天线(SMA 阳头) 1 根
- ◆ 标配 12VDC/0.5A 电源 1 个
- ◆ RS232 三芯线 1条(或 RS485线 1条,可选)

2.3 安装与电缆连接

外形尺寸:

IP MODEM 封装在金属机壳内,可独立使用,两侧有固定的孔位,方便用户安装,具体的尺寸参见下图。(单位:mm)

安装指示图

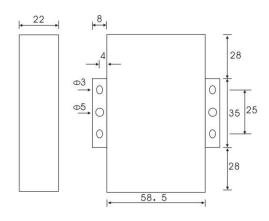


图 2-1 安指示图

天线及 SIM 卡安装:

IP MODEM 天线接口为 SMA 阴头插座。将配套天线的 SMA 阳头旋到 IP MODEM 天线接口上,并确保旋紧,以免影响信号质量。

安装或取出 SIM 卡时,先用尖状物插入 SIM 卡座右侧小黄点,SIM 卡套即可弹出。安装 SIM 卡时,先将 SIM 卡放入卡套,并确保 SIM 卡的金属接触面朝外,再将 SIM 卡套插入抽屉中,并确保插到位。

接口信号定义说明:

接口编号	接口名称	默认功能	扩展功能
1	PWR	电源输入正极	无
2	GND	系统地	无
3	GND	系统地	无
4	RX1	RS232 数据接收	无
5	TX1	RS232 数据发送	无
6	Α	RS485 通讯接口正极	
7	В	RS485 通讯接口负极	
8	101	GPIO,可检测干节点信号和 3.3V 开关	可定制脉冲输出、脉冲计
		量信号。可输出 3.3V 开关量信号	数和模拟量输入功能
9	102	GPIO,可检测干节点信号和 3.3V 开关	可定制脉冲输出、脉冲计
		量信号。可输出 3.3V 开关量信号	数和模拟量输入功能
10	103	GPIO,可检测干节点信号和 3.3V 开关	可定制脉冲输出、脉冲计
		量信号。可输出 3.3V 开关量信号	数和模拟量输入功能
11	ADC1	模拟量输入功能(4~20mA 电流采集)	可定制 GPIO、脉冲输出、
			脉冲计数功能
12	ADC2	模拟量输入功能(4~20mA 电流采集)	可定制 GPIO、脉冲输出、
			脉冲计数功能

安装线序说明:

IP MODEM V4 采用工业级端子接口,建议使用的电源线材和数据线材为 28-16AWG。标配电源和数据线说明如下:

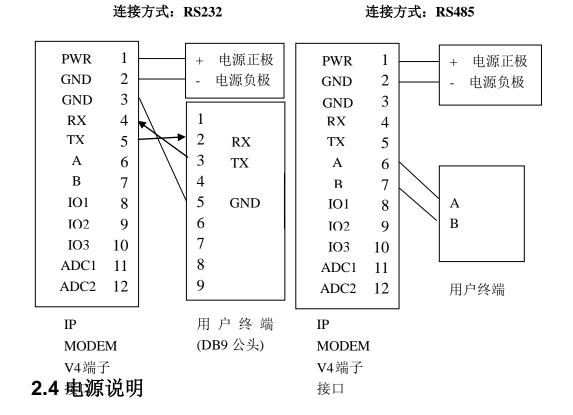
电源(输出 12VDC/0.5A):

线材颜色	电源极性
黑白相间	正极
黑色	负极

RS232 线 (一端为 DB9 母头):

线材颜色	对应 DB9 母头管脚
棕色	2
蓝色	3
黑色	5

RS485 线 (可选):


线材颜色	信号定义
红色	RS485 正极(A)
黑色	RS485 负极(B)

安装电缆:

电源和数据接口线缆连接示意图:

IP MODEM 通常应用于复杂的外部环境。为了适应复杂的应用环境,提高系统的工作稳定性,IP MODEM 采用了先进的电源技术。用户可采用标准配置的 12VDC/500mA 电源适配器给 IP MODEM 供电,也可以直接用直流 5~36V 电源给 IP MODEM 供电。当用户采用外加电源给 IP MODEM 供电时,必须保证电源的稳定性(纹波小于 300mV,并确保瞬间电压不超过 36V),并保证电源功率大于 6W 以上。

推荐使用标配的 12VDC/0.5A 电源。

2.5 指示灯说明

IP MODEM 提供三个指示灯: "Power", "ACT", "Online"。指示状态如下:

指示灯	状态	说明
Power	灭	设备未上电
	亮	设备电源正常
ACT	灭	没有数据通信
	闪烁	正在数据通信
Online	灭	IP MODEM 不在线
	亮	IP MODEM 在线

第三章 参数配置

3.1 配置连接

在对 IP MODEM 进行配置前,需要通过出厂配置的 RS232 串口线或 RS232-485 转换线 把 IP MODEM 和用于配置的 PC 连接起来,如下图:

3.2 参数配置方式介绍

IP MODEM 的参数配置方式有两种:

- ◆ 通过专门的配置软件: 所有的配置都通过软件界面的相应条目进行配置, 这种配置方式适合于用户方便用 PC 机进行配置的情况。
- ◆ 通过扩展 AT 命令(以下简称 AT 命令)的方式进行配置:在这种配置方式下, 用户只需要有串口通信的程序就可以配置 IP

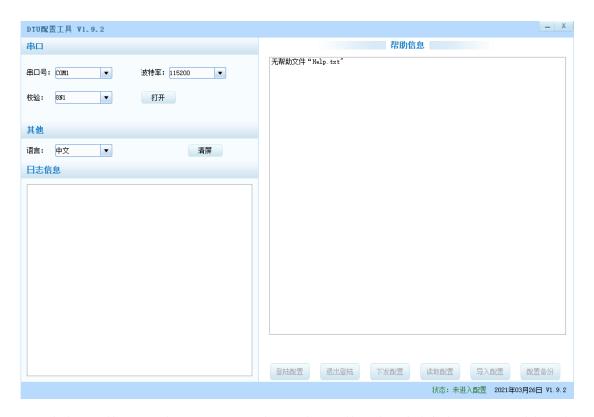
MODEM 的所有的参数,比如 WINDOWS 下的超级终端,LINUX 下的 minicom,putty 等,或者直接由用户的单片机系统对设备进行配置。在运用扩展 AT 命令对 IP MODEM 进行配置前需要让 IP MODEM 进入配置状态,其步骤请参考附录。

下面以配置软件的方式为主详细介绍 IP MODEM 的各配置项。

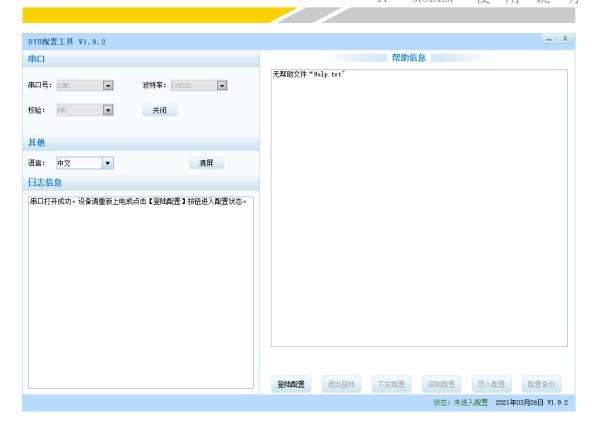
注:对于参数配置涉及相关的应用扩展 AT 命令,请参见"IP MODEM V4 应用扩展 AT 指令集"

3.3 参数配置详细说明

参数中有HEX 格式的数据设置,


对于HEX 格式,那么数据必须为十六进制字符,且字符数不能为奇数。

如"12AB" 格式正确


"12A" 格式错误,字符数为奇数

"12G" 格式错误, 非十六进制字符

3.3.1 配置工具运行界面

在串口参数设置栏内显示当前打开串口的串口参数,默认波特率为 115200,连接设备 打开相应串口号,运行界面如下:

3.3.2 设备上电

设备上电后,参数配置软件使 IP MODEM 进入配置状态后会自动载入设备中的当前配

置参数,并显示在右边的 配置界面 中,至此可以开始配置 IP MODEM 中所有配置参数。注:对于 4G 模块,设备上电后进入配置状态会比较慢,约 40 秒。

3.3.3 工作模式

3.3.3.1 连接协议设置

针对不同的客户需求 IP MODEM 可以配置成多种协议模式。

注:不同的协议模式下,配置工具会根据当前的协议模式展现不同参数配置项,客户只需根据展现的参数配置项配置即可。

PORT 协议设置

心跳包采用 TCP 协议,数据通信也采用 TCP 协议,心跳包和数据通信采用同一个 TCP 连接,需配置 8 位设备 ID 号和手机号。

连接协议设置 工作协议: 设备ID:	
设备 ID	8 位设备 ID 号
手机号码	设备的 SIM 卡号码,也可以配置为任意的 11 位数字

DCTCP 协议设置

电力相关通讯协议,采用 TCP 协议传输

连接协议设置 工作协议 手机号码	
手机号码	设备的 SIM 卡号码,也可以配置为任意的 11 位数字

DCUDP 协议设置

电力相关通讯协议,采用 UDP 协议传输

连接协议设置 工作协议 手机号码	
手机号码	设备的 SIM 卡号码,也可以配置为任意的 11 位数字

TRNS 协议设置

设备工作于普通的 GPRS MODEM 工作方式,此模式下, IP MODEM 可用于短信, CSD 和拨号上网

连接协议设置

工作协议: TRMS ▼

SMSCLI 协议设置

IP MODEM 作为短信 DTU,工作数据通过短信的方式发到已绑定的手机上,同时接收已绑定的手机发送的内容,并将数据发送指定的外围接口上

短信号码组1: [短信号码组2: [短信号码组3: [短信号码组4: [SMSCLI ▼ 15396235920
短信号码组	绑定指定收发短信号码,最多支持 5 个手机号
是否显示号码	是否把来短信号码输出到指定的接口上
16 进制强制转文本	把 16 进制的数据转为文本格式收发

SMSSER 协议设置

IP MODEM 作为短信 DTU,工作数据通过短信的方式发到任意指定的手机上,但对发送内容有要求,必须按指定的格式组帧发送,同时手机可以向短信 DTU 发送数据,短信 DTU 会将数据发送指定的外围接口上。

自定义协议设置:客户端模式

支持 TCP 或 UDP 传输协议,同时支持自定义注册和心跳包

连接协议设置			
工作协议:	自定义 ▼		
设备模式:	客户端模式 ▼ 传输协议: TCP ▼		
注册及心跳:	开启 ▼		
包格式:	Text ▼		
注册包:	注册包回应:		
心跳包:	心跳包回应:		
传输协议	TCP 或 UDP		
16 进制强制转文本	把 16 进制的数据转为文本格式收发		
注册及心跳	若选择"关闭"则无需配置以下参数,否则需要按要求配置参数		
包格式	Text:以下内容将以 text 格式传输		
	Hex: 以下内容将以 16 进制格式传输		
注册包	自定义注册包		
注册包回应	自定义注册包回应		
心跳包	自定义心跳包		
心跳包回应	自定义心跳包回应		

自定义协议设置: 服务端模式

支持 TCP 或 UDP 传输协议

设备模式:	自定义 ▼ 服务端模式 ▼ 传输协议: TCP ▼
传输协议	TCP 或 UDP
监听端口	服务端监听端口号

HTTP 协议设置:

连接协议设置			
工作协议:	HTTP	-	
HTTP请求方式:	POST	-	

HTTP 请求方式	POST 或 GET				
协议说明	当配置成 http 模式时,服务器地址可以配置成网址格式,如:				
	"http://www.four-faith.com/"这种格式,设备会根据网址去判断端口,故				
	不需要配置端口号				
	POST 模式时透传数据放在 http 的尾部				
	GET 模式时透传数据放在 http 的请求头				

MTCP/MRTU 协议设置:

连接协议设置 工作协议设置 设备2 数据是否转	※: MTCP/MRTV ▼ ID: 74657374
协议说明	当前模式跟 PROT 模式一致,故相关参数跟 PROT 模式类似,只是在该基础上增加了平台下发 ModbusTcp 和下位机的 ModbusRTU 的协议互转支持,注意:如果存在特殊数据最好把转义关闭,避免透传的 modbus 数据被转义

MQTT 协议设置:

连接协议设置		
工作协议:	MQTT	•
Client ID:		
用户名:		
密码:		
接收 Topic:		
发送 Topic:		
产品KEY:		
上报间隔(s):	0	
批量上报数量:	0	
数据缓存:	启用	
Client ID		同 mqtt 的连接参数
用户名		同 mqtt 的连接参数
密码		同 mqtt 的连接参数
接收 Topic		mqtt 连接成功以后设备会订阅该主题
发送 Topic		mqtt 连接成功后,串口透传的数据会通过该主题发送
产品 KEY		暂时没用
上报间隔		开启 modbus 采集时有效,范围 0~65535,单位秒,代表 modbus
		采集打包数据上报间隔
批量上报数量		开启 modbus 采集时有效,范围 0~65535,代表 modbus 采集
		上报的每个数据包最大数量,配置成0按默认打包
数据缓存		启用或禁用,启用表示 modbus 采集时,网络未连接时是否启
		用数据缓存保存

SMSTRNS 协议设置:

连接协议设置 工作协议: SMSTRNS	•
协议说明	该模式支持通过固定的 AT 指令进行发送短信和接收短信,如: "AT+SENDSMS=号码,短信中心,短信内容"发送短信,
	"AT+RECVSMS"读取短信,返回格式为"序号,号码,时间,短信
	内容",内容均为十六进制字符串

3.3.3.2 激活方式

通常情况下 IP MODEM 工作在实时在线的状态,随时保持数据传输通道的畅通,及时传输应用数据。但在一些对无线通信数据流量特别敏感的场合,为了节省流量,平时可以让 IP MODEM 处于待机状态,一旦有应用数据需要传输的时候,通过 IP MODEM 的内部的激活方式,使 IP MODEM 上线,建立数据传输通道,传输完成后挂断连接使其重新回到待机状态,IP MODEM 支持如下几种激活方式。

自动

该方式下使 IP MODEM 设置自动在线

ſ		
激活设置		
激活方式:	自动	
		-

短信激活

通过给 IP MODEM 发送短信,只有收到绑定的手机号短信才能有效激活 IP MODEM 电话激活:通过电话呼叫 IP MODEM,使其建立数据通信链路

激活设置 激活方式: 短信激活号码:[宣信激活 ▼
短信激活号码	需绑定短信激活号码

电话激活

通过电话呼叫 IP MODEM,使其建立数据通信链路。可选择绑定电话号码。 若不绑定电话激活号码,则任何手机给 IP MODEM 打电话均可激活。

若选择绑定电话激活号码,则只有该绑定的电话激活号码才能激活,否则继续保持待机状态。

注:选择绑定电话激活的手机号,一定要确保该手机号开通了来电显示业务,否则无法识别来电号码

激活设置 激活方式: [6	世活激活 ▼	
电话激活号码:		
电话激活号码	绑定电话激活号码	

串口激活

数据激活的方式,通过向 IP MODEM 串口发送特定的数据,使 IP MODEM 建立或者拆除数据通信链路

激活设置 激活方式:	串口激活 ▼		
上线数据:	don 下线数据: doff		
激活接口:	串口1 数据格式: Text ▼		
\	, , , , , , , , , , , , , , , , , , ,		
上线数据	自定义上线数据或不配置(为空)		
	若定义了上线数据,则必须与定义的上线数据完全匹配方能激活,		
	否则不激活;		
	若不配置(为空),则任意数据均可激活,注:第一帧数据会丢弃,		
	这种情况下设备将进入深度休眠		
下线数据	自定义下线数据或不配置(为空)		
激活接口	只有配置为激活接口,才能激活设备,支持"串口1"和"串口2"		
	两个外围接口		
数据格式	激活数据内容格式,支持"Text"和"Hex"两种格式		

I/O 激活: 休眠与唤醒

通过指定 I/O 口电平变化激活 IPMODEM,即:当 I/O 口输入高电平或悬空时,为激活状态,输入低电平时,设备进入深度休眠状态

	括方式: I
	0选择: 1/01 ▼
休眠/唤醒	当所选择的 I/O 输入低电平时,设备将进入深度休眠,输入高电平立即唤醒
I/O	选择休眠/唤醒的 I/O 口,只有选择的 I/O 口才能进入休眠/唤醒模式

混合激活

同时支持短信,电话,串口和 I/O 激活方式的混合方式,只要满足其中一种的激活条件,IP MODEM 则被激活

激活设置					_
0540以且					
激活方式:	混合激活	-			
电话激活号码:			短信激活号码:		
上线数据:	don		下线数据:	doff	
激活接口:	串口2	•	数据格式:	Text ▼	
·					

电话激活号码	若不绑定电话激活号码,则任何手机给 IP MODEM 打电话均可激活。	
	若选择绑定电话激活号码,则只有该绑定的电话激活号码才能激	
	活,否则继续保持待机状态	
短信激活	只有收到绑定的手机号短信才能有效激活	
上线数据	自定义上线数据或不配置	
下线数据	自定义下线数据或不配置	
激活接口	只有配置为激活接口,才能激活设备,支持"串口1"和"串口2"	
	两个外围接口	
数据格式	激活数据内容格式,支持"Text"和"Hex"两种格式	

3.3.3.3 调试信息

调试信息等级用于设备的软件调试或者简单的信息提示

3.3.4 中心服务

3.3.4.1 中心服务器

IP MODEM 支持两种数据服务中心接收数据的方式:

一种是主备中心备份的方式,中心服务器数目为1时 IP MODEM 将工作于主副中心备份的方式,此时主中心和备份中心配置生效。当 IP MODEM 上线以后,它首先去连接主中心,如果连接成功 IP MODEM 将和主中心进行数据通信,否则 IP MODEM 会尝试连接备份中心

进行数据通信。注:如果没有备份中心的话,请把备份中心和主中心配置成相同的值。

中心服务器			
服务器数量:	1		
主服务器:	27. 154. 58. 226	端口:	9240
备服务器:	27. 154. 58. 226	端口:	9240

另一种是多中心的方式,中心数目大于 1 时 IP MODEM 将工作于多中心的方式,此时备份中心无效,主中心和中心 $1\sim5$ 有效。IP MODEM 最多可以支持到同时和 5 个中心进行数据通信,在这种模式下,IP MODEM 上线后会尝试和配置的多个数据中心建立连接,并进行数据通信。

中心服务器			
服务器数量:	5		
服务器1:	27. 154. 58. 226	端口:	9240
服务器2:	27. 154. 58. 226	端口 :	9239
服务器3:	166, 111, 8, 238	端口:	23
服务器4:	166, 111, 8, 238	端口 :	23
服务器5:	166, 111, 8, 238	端口 :	23

3.3.4.2 多中心连接参数设置

在实际应用中,如果由于中心服务器异常或者关闭服务器,导致 IP MODEM 始终无法建立连接, IP MODEM 为了确保永远在线而不断地尝试建立连接。

多中心连接参数	多中心连接参数设置			
重连间隔器: 60				
重连次数:	5			
重连间隔	登录中心服务器失败时,IP MODEM 将按此重连间隔尝试重新登录中			
	心服务器			
重连次数	多次重新登录中心服务器失败,且达到此重连次数,将重新拔号处理			

3.3.4.3 ICMP 方式链路检测

若开启 ICMP 方式链路检测,由将会以 ICMP 检测间隔定时向 ICMP 地址(一般为服务器端)发送 Ping 包数据来检测与 ICMP 地址端的通信是否正常,若连续检测 ICMP 失败达到 ICMP 检测数,则立即断开所有连接,重新拔号处理。

	ICIP方式链路检测				
ICMP方式链路检	测: 开启 ▼				
ICMPt也	址: 120.42.46.98 ICMP检测间隔(秒): 30				
ICMP检测次	数: 5				
ICMP 方式链路检测	开启或关闭				
ICMP 地址	Ping IP 地址				
ICMP 检测间隔	注: 间隔不要太短,建议 60 秒以上				
ICMP 检测次数	注: 建议检测次数超过 3 次				

3.3.5 串口

IP MODEM 提供了两路独立数据通信接口,即: 串口 1 和 RS485,其中两路通信接口的任意通信接口都可以进入配置状态,这两路通信接口的通信默认波特率为 115200、数据格式为 8N1,即: 8 位数据位、无校验位和 1 个停止位。同时两路通信接口可以绑定中心服务器。

RS232	
波特?	率: 115200 ▼
校验	½: 8N1 ▼
通信绑	定: 所有中心 ▼
RS485	
波特?	率: 9600 ▼
校	1½: 8N1 ▼
通信绑	定: 所有中心 ▼
	波特率: 1200~115200bps,(600,230400bps 可选)
	校验: 请参见具体的校验选项
	通信绑定: 若摆选择绑定所有中心或其中1个中心,则该串口接收到的
RS232/RS485	数据将向中心发送,同时该串口也将接收中心下发的数据;若选择关闭,
	则该串口不往中心发数据,同时也不接收中心下发的数据,具体的通信
	绑定设置,请参见通信绑定选项

3.3.6 无线拔号

3.3.6.1 PPP 拔号

PPP拨号 拨号号码: [APN接入点: [密码: [网络模式: [AUTO		查询模块搜网模式: 用户名: PPP认证: AUTO ▼
拔号号码	-	运营商	拔号号码
	移	动、联通 电信	*99***1#、*99#、*98*1# #777
APN 接入点		运营商	APN
APN 接入点	-	动、联通	cmnet uninet
		电信	空
		运营商	用户名/密码
 用户名和密码	移	动、联通	空
		电信	均为 card
PPP 认证	F	PPP 认证方式,	,支持 AUTO、PAP 和 CHAP 三种认证方式
查询模块搜网模式	仅	针对 4G 通信	模块,点击对话框设备将返回当前网络模式
网络模式			网络模式选择
			网络模式
		AUTO	自动选择网络,一般用于 4G 模块
	EVDO		电信 3G 网络
		WCDMA	联通 3G 网络
		TD-SCDMA	移动 3G 网络
		CDMA	电信 2G 网络
		GSM	移动/联通网络

3.3.6.2 PPP 重拔设置

PPP重拨设置 PPP重拨间隔: 3C 最大重拨次数: 2	
PPP 重拔间隔	PPP 拔号失败后,将按此重拔间隔重拔
最大重拔次数	PPP 连续重拔失败后,且达到此重拔次数,将重启设备

3.3.6.3 DNS 服务

当数据服务中心采用域名的时候,需要 DNS 服务器来解析域名对应的 IP 地址,数据服务中心的数量为 1 时,主中心和备份中心域名服务器分别用于解析主中心,备份中心域名对应的 IP 地址。

DWS服务设置			
主DMS服务器: 8.8.8.8			
备DMS服务器	8.8.8.8		
主 DNS 服务器	必须是 IP 地址		
备 DNS 服务器	必须是 IP 地址		

3.3.7 全局参数

3.3.7.1 PPP 方式链路检测

若开启 PPP 层检测,则将按 PPP 层检测间隔定时检测 PPP 层的链路是否正常,若连续检测链路异常达到一定次数,则立即释放 PPP 链路,重新建立 PPP 链路。

PPP方式链路检测						
PPP层检测:	PPP层检测: 开启 ▼					
PPP检测间隔(秒):	60 PPP检测次数: 5					
PPP 层检测	开启或关闭					
PPP 层检测间隔	注:间隔不要太短,建议60秒以上					
PPP 检测次数	注:建议检测次数超过3次					

3.3.7.2 短信设置

短信设置 短信中心号码	:			
短信中心号码 根据当地运营商情况来配置				

3.3.7.3 数据帧设置

数据帧设置 发送组包等待 (MS)	: 20 MTV长度: 1450				
数据帧间隔	用于判断串口数据帧是否接收完成,如果两字节间的时间间隔大于				
	设定的值,IP MODEM 立即将当前接收到的数据发送到数据中心				
MTU 长度	设置每个 TCP 数据包的最大传输数据量				

3.3.8 设备管理

3.3.8.1 设备平台设置

若开启管理平台功能,设备将上报本身的一些设备信息,比如:网络信号、网络状态、流量等信息,同时管理平台了可以查询设备的相关信息,比如:读取或配置设备的参数、日志读取等功能。

设备平台设置 管理平台: 屏	ÎB ▼				
	9901010 传输协议: TCP ▼ 21.40.136.108 端口: 9692				
管理平台	开启或关闭				
平台 ID	8 位平台 ID 号,用于管理平台的设备 ID				
传输协议	TCP 或 UDP				
服务器地址	管理平台服务器地址				
端口	管理平台服务器端口号				

3.3.8.2 短信管理

若开启短信管理功能,则可以通过手机按照一定格式配置设备参数

短信管理 短信配置: 短信配置密码:	开启 123456
管理员号码:	13599514095
短信配置	开启或关闭
短信配置密码	必须与短信配置密码匹配才能配置设备参数
管理员号码	若配置管理员号码,则只有该管理号码的手机才能配置参数;若为空,则任意手机号码均可能配置参数

3.3.9 Modbus 配置

3.3.9.1 采集参数

Todbus配置 Modbus查询间隔(s): 0 查询 查询重试次数: 0	∄超时(ms): □
Modbus 查询间隔	该间隔表示每个通道的采集间隔,循环采集
查询超时	表示采集时的超时时间
查询重试次数	表示采集失败时重试次数

3.3.9.2 通道参数

Modbus 采集只有设置成 mqtt 工作模式时才会上报数据, 其他模式配置只会定时向下位机发送采集数据。

通道号	设备开关	设备地址	功能码	寄存器地址	寄存器个数	数据类型
1	关					
2	关					
小数点个	数 绑定品	8口 数据标	i签名称 数	数据变化		

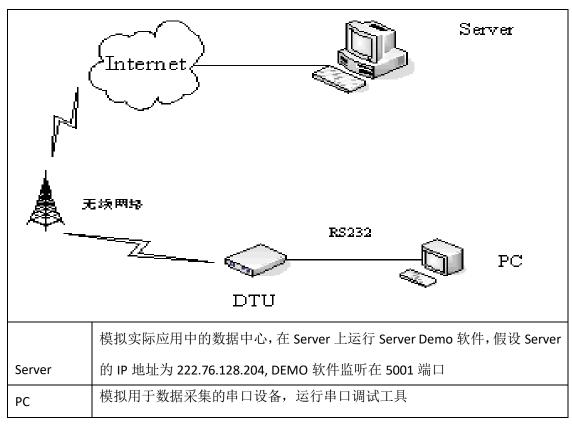
通道号	范围 1~16
设备开关	开或关,设备开关为关时该通道不采集
设备地址	代表 modbus 的地址

功能码	代表 modbus 的功能码			
寄存器地址	代表 modbus 的寄存器地址			
寄存个数	代表 modbus 采集的寄存器个数,一个寄存器为 2 字节			
数据类型	当前支持的类型:			
	INT16U_AB,INT16U_BA,INT16S_AB,INT16S_BA,			
	INT32U_ABCD,INT32U_BADC, INT32U_CDAB,INT32U_DCBA,			
	INT32S_ABCD,INT32S_BADC,INT32S_CDAB,INT32S_DCBA,			
	FLOAT_ABCD,FLOAT_BADC,FLOAT_CDAB,FLOAT_DCBA,			
	INT_BCD			
小数点个数	针对 float 类型的小数点个数保留			
绑定串口	RS232-1, RS232-2, 485			
数据标签名称	针对 modbus 采集上报的 json 格式中标签名称的配置			
数据变化	表示是否检测数据变化进行实时上报,0-表示关闭,按照常规定时上报,1-			
	表示开启			

3.3.10 其它功能项

登陆配置	下发配置	读取配置	读取日志	恢复出厂	获取版本	
退出登陆	导入配置	配置备份	读卡检测	检测信号	时间设置	
登录配置	设备处于	- 工作状态时,	通过登录配置	使设备进入配	置状态	
下发配置	把相关参	参数下发给设备	, 使其立即生	效		
读取配置	读取当前	方设备所有参数	信息			
读取日志	读取设备	读取设备存储的运行日志信息				
恢复出厂设置	恢复设备	恢复设备出厂时参数				
检测版本	查询设备	查询设备软件和硬件版本号				
退出登录	从配置》	从配置状态切换到工作状态				
导入配置	导入原面	导入原配置参数,自动完成设备参数设置				
配置备份	保存当前	保存当前设备的所有配置参数				
读取卡检测	检测当前	检测当前 SIM 卡是否正常				
检测信号	查询当前	查询当前手机信号强度				
时间设置	配置设备	配置设备的系统时间				

第四章 数据传输试验环境测试


4.1 试验环境网络结构

由数据采集 PC 发送数据给 Server 的数据流程为:

PC 串口数据 → IP MODEM 串口 → IP MODEM TCP/IP 协议栈对数据进行 TCP/IP 封装

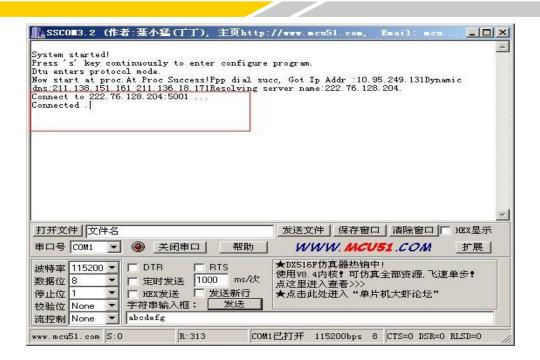
→ 发送到无线网络 →无线网络转发到 INTERNET →INTERNET 转发数据到 Server 。

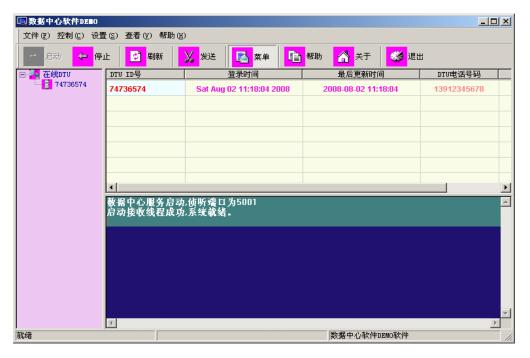
Server 发送数据到 PC 的流程是上面过程的逆向传输。

4.2 测试步骤

1.在 Server 上运行 DEMO 软件,在工具栏选择 "启动",此时数据服务中心 DEMO

程序监听在 5001 端口 (根据需要可以配置成其他端口)


2.配置 IP MODEM 参数数据服务中心的 IP 地址为 222.76.128.204, 端口为 5001, 配置 如下:


中心服务器				
服务器数量:	1			
主服务器:	222, 76, 128, 204	端口 :	5001	
备服务器:	222, 76, 128, 204	端口 :	5001	

3.关闭 IP MODEM 配置工具,运行串口测试程序

4.确认 IP MODEM 中已经插入可用于数据通信的 SIM 卡,并重新上电 IP MODEM 使其正常工作。

- 5.串口工具提示的信息表明 IP MODEM 与数据中心成功建立连接。
- 6.通过串口工具给 Server 发送数据,数据中心 DEMO 上显示接收到的数据,说明串口工具能够正确发送数据给数据中心。
- 7.数据中心发送数据给串口工具。

以上测试表明,数据中心 DEMO 和串口工具能够双向进行数据通信